Evaluación de la tasa de infiltración en tierras agrícolas, forestales y de pastoreo en la subcuenca del río Shullcas

  • Guillermo Carlos Gómez
  • Rubén Munive Cerrón
  • Tito Mallma Capcha
  • Carlos Orihuela Villavicencio
Palabras clave: Infiltración, cobertura vegetal, densidad aparente, porosidad, tierra agrícola, tierra forestal, tierra de pastoreo.

Resumen

Objetivos: Evaluar y determinar el uso del suelo con mayor tasa de infiltración en la subcuenca del río Shullcas en Huancayo. Métodos: Se desarrolló una investigación básica con diseño correlacional. Los usos actuales de la tierra fueron identificadas y demarcadas, según la normativa peruana de clasificación de tierras por su capacidad de uso mayor; en estas zonas se seleccionó 31 puntos de muestreo al azar usando las herramientas de software ArcGIS, en los que se midieron la infiltración empleando infiltrómetros de doble anillo, se registraron los tipos de cobertura vegetal y se tomaron muestras de suelo para analizar sus contenidos de arcilla, arena, limo y humedad; asimismo densidad aparente y porosidad en laboratorio. Resultados: Las tasas de infiltración promedio, según el tipo de uso de tierras, fueron: 14,04 cm/h para las tierras forestales; 12,42 cm/h para las tierras agrícolas y 2,07 cm/h para las tierras de pastoreo; además, solo el 12,63% de la subcuenca del río Shullcas tiene infiltración mayor a 0,2 cm/h. Conclusiones: No existe diferencia estadística significativa entre la tasa de infiltración de tierras forestales y agrícolas, pero si existe diferencias de la tasa de infiltración de tierras forestales y agrícolas respecto a la tasa de infiltración de tierras de pastoreo.

Citas

1. Parchami-Araghi F, Majid S, Ghorbani S, Hossein M. Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. Journal of Hydrology. 2013; 481:35-47.

2. Richards LA. Report of the Subcommittee on permeability and infiltration, Committee on Terminology. Soil Science Society of America. 1952; 16: 85-88.

3. Hillel D. Environmental Soil Physics. San Diego: Academic Press; 1998.

4. USDA [Internet]. Washington: Natural Resouces Conservation Service. 1998 [Citado el 10 de junio de 2013]. Soil quality indicators: Infiltration [2 páginas]. Disponible en: http://soils.usda.gov/sqi/publications/files/Infiltration.pdf

5. Akintoye O, Ukata S, Esomonye, H. The effects of landuse on the infiltration capacity of coastal plain soils of Calabar-Nigeria. International Journal of Applied Science and Technology. 2012; 2(2): 80-84.

6. Návar J, Synnott T. Soil infiltration and land use in Linares. Terra Latinoamericana. 2000; 18 (003): 255-262.

7. Wood MK, Blackburn W. Grazing systems: their influence on infiltration rates in the rolling plains of Texas. Journal of Range Management.1981; 34(4): 331-335.

8. Klingebiel AA, Montgomery PH. Landcapability classification. Washington: Soil Conservation Service United States Department of Agriculture; 1961.

9. Rawls W, Ahuja L, Brakensiek D, Shirmohammadi A. Infiltration and soil water movement. Texas: Maidment DR; 1993.

10. Wuest SB. Earthworm, infiltration, and tillage relationships in a dry land pea–wheat rotation. Applied Soil Ecology. 2001; 18(2): 187–192.

11. Makungo R, Odiyo J. Determination of steady state infiltration rates for different soil types in select areas of Thulamela Municipality, South Africa. 15th South African National Hydrology Symposium. Grahamstown: Rhodes University; 2011. Disponible en: http://www.ru.ac.za/static/institutes/iwr/SANCIAHS/2011/the.pdffiles/R_Makungo_Paper.pdf

12. Harden C, Delmas P. Infiltration on mountain slopes: a comparison of three environments. Geomorphology. 2003; (55): 5-24.

13. Allison LE, Bernstein L, Bower CA, Brown JW, Fireman M, Hatcher JT, et al. Diagnosis and improvement of saline and alkali soils. Washington: United States Department of Agriculture; 1954.

14. Servicio Nacional de Meteorología e Hidrología del Perú. Los cambios del clima y sus impactos en la disponibilidad hídrica y principales cultivos en la subcuenca del río Shullcas, Junín. Lima: SENAMHI/Zona Comunicaciones; 2012.

15. Guerrero J. Estudio agrometeorológico de la subcuenca del río Shullcas. Huancayo: Proyecto de adaptación al impacto del retroceso acelerado de glaciales en los Andes Tropicales/SENAMHI; 2012. Contrato N°: 046–2012-SGCAN.

16. Servicio Nacional de Meteorología e Hidrología del Perú. Disponibilidad hídrica actual y futura al 2030 subcuenca Shullcas - Junín. Lima: Proyecto de Adaptación al Impacto del Retroceso Acelerado de Glaciales en los Andes Tropicales – PRAA/SENAMHI; 2011.

17. Administración Local del Agua Mantaro. Evaluación de recursos hídricos superficiales en la cuenca del río Mantaro. Lima: Autoridad Nacional del Agua/Ministerio de Agricultura y Riego; 2010.

18. Martínez A. Análisis de la vulnerabilidad ante los efectos del cambio climático y propuestas de adaptación en la ciudad de Huancayo. Lima: Fondo Editorial del Seminario Permanente de Investigación Agraria (SEPIA); 2007.

19. Dirección general de estudios y proyectos de recursos naturales. Caracterización de los recursos naturales renovables para el alivio a la pobreza en sierra - microcuenca Shullcas, Junín. Lima: Instituto Nacional de Recursos Naturales; 1997.

20. Intendencia de Recursos Hídricos. Delimitación y codificación de unidades hidrográficas del Perú. Lima: Ministerio de Agricultura; 2007.

21. Ministerio de Agricultura. Reglamento de clasificación de tierras por su capacidad de uso mayor. Lima: Dirección General de Asuntos Ambientales Agrarios; 2009. Decreto Supremo N° 017-2009-AG.

22. Food and Agriculture Organization. Colección FAO: Capacitación: Métodos sencillos para la acuicultura [CD-ROM]. Roma: FAO; 2003.

23. Landon JR. Tropical soil manual booker agriculture. Londres: International Limited; 1984.

24. Wahren A, Feger KH, Schwärzel K, Münch A. Land-use effects on flood generation-considering soil hydraulic conductivity measurements in modeling. Adv. Geosci. 2009; 21: 99-107.

25. Mapa RB. Effect of reforestation using Tectona grandis on infiltration and soil water retention. Forest Ecology and Management. 1995; 77(1-3): 119-125.

26. Mann L, Tolbert V. Soil sustainability in renewable biomass plantings. AMBIO: A Journal of the Human Environment. 2000; 29(8): 492–498.

27. Selim T. The effect of land use on soil infiltration rate in a heavy clay soil in Egypt. VATTEN. 2011; 67: 161-166.

28. Olson N, Gulliver J, Nieber J, Kayhanian M. Remediation to improve infiltration into compact soils. Journal of Environmental Management. 2013; 117: 85-95.

29. Egbai O, Uquetan I, Ewa E, Ndik E. Infiltration rate assessment of coastal plain (ultisols) soils for sustainable crop production in the frontiers of Calabar-Nigeria. Journal of Sustainable Development. 2011; 4(4): 222-229.

30. Martin D, Moody J. Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrological Processes. 2001; 15(15): 2893-2903.

31. Broersma K, Robertson J, Chanasyk D. Effect of different cropping systems on soil water properties of a Boralf soil. Communication in Soil Science and Plant Analysis. 1995; 26(11-12): 1795-1811.

32. Hillel D. Introduction to soil physics. New York: Academic Press Inc; 1982.

33. Srinivasan K, Poongothai S. Assessment of Infiltration rate of a tank irrigation watershed of Wellington reservoir Tamilnadu. American Journal of Engineering Research. 2013; 2(7): 41-48.

34. Suárez E, Arcos E, Moreno C, Encalada AC, Álvarez M. Influence of vegetation types and ground cover on soil water infiltration capacity in a high-altitude páramo ecosystem. Avances en ciencias e ingenierías. 2013; 5(1): 14-21.

35. Bassey E, Imoke D, Comfort O. Evaluation of the infiltration capacity of soils in Akpabuyo Local Government area of cross river. Journal of Geography and Geology. 2011; 3(1): 189-199.

36. Neris J, Jiménez C, Fuentes J, Morillas G, Tejedor M. Vegetation and landuse effects on soil properties and water infiltration of andisols in Tenerife (Canary Islands, Spain). Catena. 2012; 98: 55-62.

37. Huang J, Wu P, Zhao X. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena. 2013; 104: 93-102.

38. Abu-Hashim MSD. Impact of landuse and land-management on the wáter infiltration capacity of soils on a catchment scale. [Tesis doctoral]. Braunschweig: Technischen Universität Carolo - Wilhelmina; 2011.

39. Harden C, Delmas P. Infiltration on mountain slopes: a comparison of three environments. Geomorphology. 2003; (55): 5-24.

40. Janeau J, Bricquet J, Planchon O, Valentin C. Soil crusting and infiltration on steep slopes in northern Thailand. European Journal of Soil Science. 2003; 54: 543-553.

41. Wilcox B, Wood M, Tromble J. Factors influencing infiltrability of semiarid mountain slopes. Journal of Range Management. 1988; 41(3): 197–206.

42. Bamutaze Y, Makooma M, Gilbert M, Vanacker V, Bagoora F, Magunda M, et al. Infiltration characteristics of volcanic sloping soils on Mountain Elgon, Eastern Ugada. Catena. 2010; 80(2): 122-130.

Publicado
2014-07-10
Sección
Artículos de investigación