Spatial characterization of storm's frequency and intensity from the GOES-12 satellite and the meteorological station from Huancayo Observatory

  • Jacinto Arroyo Aliaga
  • Elizabeth Machuca Manrique
  • Pedro Gurmendi Párraga
Keywords: Storm, frequency, intensity, precipitation.

Abstract

Objetives: The investigation had as aim characterize the frequency and intensity of rainfalls storm from images obtained of the satellite GOES-12 and information registered in the Meteorological Station of Huancayo Observatory, during the hydrological cycles comprising from July, 2012 to June, 2014. Methods: The method of the hidroestimador was in use that georreferencia the point and the intensity by means of the empirical exponential relation between the rainfall estimated by radar and the temperature of sheen of the ceiling of the clouds from the infrared channel that produces rates of real time rainfall and the method of intensity of rainfall that evaluates the index of intensity in millimeters per hour nevertheless, due to the fact that the information that is registered in the pluviometer takes biases as contour effects, took as resource the analysis of storms in 120 minutes with maximum rain in 12 hours. Results: As a result precipitations are characterized by light (11 events), moderate (8 events), strong (3 events) and extreme (5 events) from the analysis of the physical station data and maps of rainfall intensities coupled time-space two extremes were built also the connection points between rainfall, temperature and atmospheric pressure as well as satellite images of the development of extreme storms is presented. Conclusions: There were identified the points and the area of impact of the rainfalls from the method of the hidroestimador and his correlation with the information of rainfall of the Meteorological Station of Huancayo Observatory.

References

1. Bluestein H. Synoptic-Dynamic Meteorology in Midlatitudes: Principles of Kinematics and Dynamics Vol 1. Oxford University Press; 1992.

2. Bluestein H. Synoptic-Dynamic Meteorology in Midlatitudes: Observations and Theory of Weather Systems Vol 2. Oxford University Press; 1993.

3. Cuevas E, Rodríguez J. Estadística de las depresiones aisladas en niveles altos. V Simposio Nacional de Predicción. Madrid: Ministerio de Medio Ambiente. Secretaria General Técnica; 2001.

4. Hernández A. Un estudio de las depresiones aisladas en niveles altos (DANAs) en el sudoeste de Europa basados en mapas isentrópicos de Vorticidad Potencial. IV Simposio Nacional de Predicción. Madrid: Ministerio de Medio Ambiente. Secretaria General Técnica; 1999.

5. Zamanillo E. Tormentas de diseño para la provincia de entre Ríos. 1ª ed. Buenos Aires: Univ. Tecnológica Nacional; 2008.

6. David-Novak H, Morin E, Enzel Y. Modern extreme storm and the rainfall thresholds for initiating debris flows on the hyperarid western scapment of the Dead Sea, Israel. Geological Society of America Bulletin. 2004; 116(5-6): 718-728.

7. Bando U, Pereyra D, Natividad M. Curvas intensidad de la lluvia-duraciónperíodo de retorno para tres localidades del estado de Quintana Roo. XII Congreso Nacional de Meteorología. Cancún; 2002.

8. Takahashi K. Escenarios climáticos en la Cuenca del río Mantaro. Eventos Meteorológicos Extremos (sequías, Heladas y lluvias intensas) en el Valle del Mantaro. 2012; 1: 79-83.

9. Bell F. Generalized rainfall durationfrequency relationships, J Hydraul Div. 1969; 95: 311-327.

10. Campos D. Procesos del ciclo hidrológico. San Luis Potosí: Editorial Universitaria Potosina, San Luis Potosí; 1987.

11. Campos D, Gómez R. Procedimiento para obtener curvas ID- T a partir de registros pluviométricos. Ingeniería Hidráulica en México. 1990; 5(2): 39-52.

12. Campos D. Procesos del Ciclo Hidrológico. 3ª ed. San Luis Potosí: Editorial Universitaria Potosina; 1998.

13. Chen C. Rainfall intensity-duration frequency formulas. Journal of Hydraulic Engineering. 1983; 109(12): 1603-1621.

14. Scofield R. Comments on “A quantitative assessment of the NESDIS Auto-Estimador”. Wea. Forecasting. 2001; 16(2): 277- 278.

15. Vicente G, Scofield M, yMenzel W. The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc. 1998; 79(9): 1883-1898.

16. Vicente G, Davenport J, Scofield R. The role of orographic and parallax corrections on real time high resolution satellite estimation. Int. J. Remote Sens. 2002; 23(2): 221-230.

17. Chow V, Maidment D, Mays L. Hidrología Aplicada. Colombia: McGraw Hill; 1994.

18. Froehlich D. Shout-duration-rainfall intensity equations for drainage design, Journal Irigation and Drainage Engineering. 1993; 119(5): 814-828.

19. Froehlich D. Intermediatedurationrainfall intensity equations, Journal of Hydraulic Engineering. 1995; 121(10): 751-756.

20. Genovez A, Pegogaro R. Análisis y Evaluación de Ecuaciones de Lluvia Intensa Generalizada sugeridas por el CPTEC, Ingeniería Hidráulica en México. 2001; 16(3): 15-25.

21. Haber A, Runyon R. Estadística General. Bogotá: Fondo Educativo Interamericano; 1973.

22. Scofield R. The NESDIS operational convective precipitation technique. Mon Wea Rev. 2008; 115: 1773-1792.

Published
2014-07-10
How to Cite
Arroyo Aliaga, J., Machuca Manrique, E., & Gurmendi Párraga, P. (2014). Spatial characterization of storm’s frequency and intensity from the GOES-12 satellite and the meteorological station from Huancayo Observatory. Apuntes De Ciencia & Sociedad, 4(1). https://doi.org/10.18259/acs.2014005
Section
Artículos de investigación

Most read articles by the same author(s)