Temporal variability of atmospheric aerosols in Huancayo
Abstract
Objectives: To identify using satellite data temporal variability of atmospheric aerosols in Huancayo. Methods: This is a basic research, descriptive scope, longitudinal design. The data collection process was conducted using data from the aerosol index (AI) taken by the OMI sensor (ozone monitoring instrument) in the period 2005-2012; and aerosol optical depth (AOD) recorded by the MODIS (moderate resolution imaging spectroradiometer) of the Aqua and Terra platforms, in the periods 2003-2012 and 2001-2012, respectively. Results: IA 2012 recorded an annual maximum of 0,61; during the januarymarch period decreased to 0,30, from april to august increased to 0,75, and septemberdecember decreased to 0,43. Instead, the AOD reported in 2005 an annual maximum of 0,22, in the april-june period decreased to 0.09, july-september increased to 0,30 from october to december decreased to 0,22, and January-March increased to 0,20. The statistical analysis reported a correlation coefficient between the AI of sensor OMI and EOA of sensor MODIS Aqua and Terra of the platforms, being 0,1041 and 0,0982 (p<0,05), respectively. The same correlation was performed between MODIS data resulting higher, 0,902 (p<0,05). The IA showed a tendency to increase at the rate of 0,036/year; decrease the EOA, 0,003/year. Conclusions: A pattern of significant variation between the seasons and the months of both parameters, with high levels of IA in winter and autumn, peak in August was identified; the EOA, in spring and summer highs in September. This behavior is repeated during the study period.References
1. Seinfeld J, Pandis S. Atmospheric chemistry and physics from Air pollution to climate change. 1ª ed. New York: Wiley; 1998.
2. Zheng J, Che W, Zheng Z, Chen L, Zhong L. Analysis of spatial and temporal variability of PM10 concentrations using MODIS aerosol optical thickness in the Pearl River Delta Region, China. Aerosol and Air Quality Research. 2013; 13: 862-876.
3. Rojas J, Vargas P, Carrillo F. Variabilidad espacial y temporal del Espesor Óptico de los Aerosoles sobre Perú usando Imágenes de Satélite. Lima: Laboratorio de Teledetección/UNMSM; 2009.
4. Rojas N, Rojas J. Estudio de la Dinámica del Espesor Óptico de los Aerosoles en América del Sur a partir de las imágenes MODIS de los satélites Terra y Aqua (2000-2012). Lima: Laboratorio de Teledetección/UNMSM; 2012.
5. Galanter M, Levy H, Carmichael G. Impacts of biomass burning on tropospheric CO, NOx and O3, J. Geophys. Res. 2000; 105 (D5): 6633-6653.
6. Mielnicki D, Canziani P, Drummond J, Skalany JP. Quema de biomasa en el Centro-Sur de Sudamérica: Incendios locales, impactos regionales. [Internet]. 2005 Noviembre [citado 2014 Enero 10]: [10 páginas]. Disponible en: http://www.uca.edu.ar/uca/common/grupo72/files/QUema_biomasa_centro_sur_sudamerica.pdf
7. Prins E, Feltz J, Menzel W, Ward D. An overview of GOES-8 diurnal fire and smoke results for SCARB and 1995 fire season in South America. J. Geophys. Res. 1998; 103(D24), 31821–31835.
8. Suárez L, Castillo L, Marín M, Carrillo G, Rímac L, Pomalaya J, et al. Estudio de la variación estacional del ozono troposférico y aerosoles del Perú relacionado a las quemas de vegetación en la Amazonía. Mosaico Cient. 2006; 3(2): 36–41.
9. Deng X, Tie X, Zhou X, Wu D, Zhong L, Tan H, et al. Effects of Southeast Asia biomass burning on aerosols and ozone concentrations over the Pearl River Delta (PRD) region. Atmospheric Environment. 2008; 42: 8493-8501.
10. Velarde F. Estudio de la Variación Estacional de Aerosoles Transportados a la ciudad de La Paz y su relación con las quemas de Biomasa. [Tesis de grado]. La Paz: Universidad Mayor de San Andrés, Facultad de Ciencias Puras y Naturales; 2010.
11. Silva Y, Takahashi K, Chávez R. Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv. Geosci. 2007; 14: 1-4.
12. King MD, Menzel WP, Kaufman YJ, Tanré D, Gao BC, Platnick S, et al. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing. 2003; 41(2): 442-458.
13. Levy RC, Lorraine A, Remer, Mattoo S, Vermote EF, Kaufman YJ. Secondgeneration operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007; 112(D13211): 1-21.
14. Expósito F. Determinación del espesor óptico de aerosoles mediante técnicas de teledetección en la región de Canarias. [Tesis Doctoral]. Mallorca: Universidad de la Laguna; 1999.
15. GES DISC Web [Internet]. New York: National Aeronautics and Space Administration; [update 2009 Sep 08; cited 2013 Oct 31]. About MODIS [about 3 screens]. Available from: http://disc.sci.gsfc.nasa.gov/dataholdings/PIP
16. Levelt P, Hilsenrath E, Leppelmeier G, Van Den Oord G, Bhartia P, Tamminen J, et al. Science objectives of the Ozone Monitoring Instrument. IEEE Transactions on Geoscience and Remote Sensing. 2006; 44(5): 1199-1208.
17. Reyes P. Análisis y descripción general de la Plataforma GIOVANNI: Universidad de Granada; 2010.
18. Almeida A. Propriedades ópticas das partículas de aerossol e uma nova metodologia para a obtenção de espessura óptica via satélite sobre São Paulo. [Tese de doutorado]. São Paulo: Instituto de Física para obtenção do título de Doutor em Ciências. Brasil; 2005.