Changes in the hydric regime of the Lasuntay and Chuspicocha lagoons for variations in the snowfall Huaytapallana
Abstract
Objectives: Estimate effects of water torrents variations of snowfall Huaytapallana glaciers that come to the hydric system of the Lasuntay and Chuspicocha lagoons. Methods: There was used the deductive theoretical general method of exploratory level, with a non experimental design of cross-sectional type in the information treatment; as specific method it has been used the glacier mass balance to calculate water volumes of torrents starting with the installation of a beacons net on the glacier top and in the accumulation and ablation area were excavated water holes through by perforations to measure directly the snow accumulated quantity between the beginning and the end of the hydrological year. Results: There has been estimated that the volume of water torrents that come from the snowfall Huaytapallana, to the Lasuntay and Chuspicocha lagoons in 1 226 700 m3 in summer season; and 245 340 m3 in spring season. Conclusions: The accumulation maximum volume in both lagoons was in summer and the minimum volume in the spring season because of variations in the hydric regime of the accumulation and ablation system that affects the water disposability.References
1. Maisincho J, Mendoza J, Ramírez A, Soruco J, Taupin D, Wagnon P. Métodos de Observación de Glaciares en los Andes Tropicales. Mediciones de Terreno y Procesamiento de Datos: París: Ediciones IRD; 2004.
2. Francou B, Ribstein P, Wagnon P, Ramirez E, Pouyaud B. Glaciers of the tropical Andes: indicators of global climate variability. In: Huber U, Bugmann HKM, Reasoner MA. (Eds.), Global Change and Mountain Regions: An Overview of Current Knowledge, vol. 23. Springer, Dordrecht: Ediciones IRD; 2005.
3. Brasseur G. Physique et Chemique de l'Atmosphère moyenne, Masson. El Fin de las Cumbres Nevadas, Glaciares y Cambio Climático en la comunidad Andina, Paris: CAN, PNUMA, IRD, Agencia: Ediciones Española de Cooperación Internacional; 2007.
4. Baird D. An Introduction to Measurement Theory and Experiment Desig.. HJ: 3rd. ed. Prentice Hall, Englewood Cliffs; 1995.
5. Dyurgerov, M. Glacier Mass Balance and Regime: Data of Measurements and Analysis. Occasional Paper No. 55, Editors: Mark Meier (INSTAAR), Richard Armstrong (NSIDC), Institute of Arctic and Alpine Research, University of Colorado, Boulder; 2002.
6. Francou B, Ribstein P & Saravia R. Monthy Balance and Water discharge on an intertropical glacier. The Zongo Glacier, Cordillera Real, Bolivia, 16°S. Journal of Glaciology; 1995.
7. Francou B, Vuille M, Wagnon P, Mendoza J & Sicart JE. Tropical Cimate Change Recorded by a Glacier of the Central Andes During the Last Decades of the 20th century: Chacaltaya Bolivia, 16°S. Journal of Geophysical Research; 2003.
8. Kaser G. Osmaston H. Tropical Glaciers. Cambridge: University Press - United Kingdom; 2002.
9. Oerlemans J, Fortuin J, Sensitivity of glaciers and small ice caps to Greenhouse warming, Berlin; 2002.
10. Ribstein P, Tiriau E, Francou B, et Saravia F. Tropical climate and glacier hydrology: A case study in Bolivia, Journal of Hydrology; 1995.
11. Pouyaud B, Francou P, Ribstein P. Un réseau d'observation des glaciers dans les Andes tropicales, Bulletin de l'institut français d'études andines;1995.
12. Dyugerov J, Paterson V, Analysis of water of glaciers and snowfall caps to Greenhouse warming, Londres; 2006.