Explanatory model of academic performance in mathematics in high school students
Abstract
The research is explanatory with no transactional experimental design, correlational- causal, the overall objective was to establish a descriptive model of academic performance in mathematics in secondary school female students, the specific objectives identified relationships and explaining the contribution of the cognitive and affective component of attitudes, functional and behavioral competencies of job performance, and classroom activities, compared to academic performance. The probabilistic sampling was not intentional. The sample group consisted of 792 students divided into 24 sections of five grades. The instruments used were Survey of student opinion on the teaching performance of teachers, the scale attitudes toward mathematics in middle and university education, the annual job performance evaluation of teachers, the Stallings test, and official records of evaluation. In the research, the correlations between the study variables, their factors, dimensions and components were determined; We also found eleven predictive models and a model of structural equations of covariations that contribute to the explanation of academic performance. These results indicate that the predictors of the opinion are: the obligations in class, the assessment, the program, the teacherstudent relationship and the evaluation, which together explain 90%; anxiety 50%, confidence 44%, motivation 37% and liking explain 70% of the variability of attitudes.
References
Auzmendi, E. (1993). Las actitudes hacia la matemática-estadística en las enseñanzas medias y universitarias. Características y medición. Bilbao: ICE de la Universidad de Deusto. Ediciones Mensajero.
Barret, P. (1998). Evaluation of cognitive-behavioral groups treatments for Childhood Anxiety Disorders. Journal of Clinical Child Psychology, 27.
Batista, J. y Coenders, G. (2000). Modelos de Ecuaciones Estructurales. Cuadernos de Estadística 6. Madrid: La Muralla.
Bentler, M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 1990.
Browne, M., Cudeck, R. (1993). Alternative Ways of Assessing Model Fit. Testing Structural Equation Models. Newbury Park, CA: Sage.
Centra, J. y Potter, D.A. (1980). School and teacher effects: an interrelational model. Review of Educational Research, 2, 273-291.
Consejo Nacional de Educación. (2007). CNE: Proyecto Educativo Nacional al 2021. Lima: Autor.
Diseño Curricular Nacional (2009). Lima: Ministerio de Educación.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
Frank, M. y Richard, K. (1988). Anxiety about Research: An Initial Examination of Multidimentional Concept. Psychology of the Scientis, LVIII.
Glasman & Biniamov (1981). An Empirical Test of an Inventory Model of Student Study Time. The Journal Economic Education, (vol. 19). Autumm, 1998.
Hernández, S., Fernández, C., & Baptista, Z. (2010). Metodología de la Investigación. (5ª ed.). México: Mc Graw Hill.
Ministerio de Educación Nacional (2008). Guía metodológica: Evaluación Anual de Desempeño laboral. Bogotá: Revolución educativa Colombia Aprende.
Mullis, I., Martin, M., Gonzalez, E., & Chrostowski, S. (2004). Findings from IEA’s Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center. Boston College. (Disponible en http://timss.bc.edu/timss2003i/mathD.html).
Organismo de Estados Americanos. (2008). Eficacia Escolar y Factores Asociados en América Latina y el Caribe. OREAL/UNESCO: LLECE Laboratorio Latinoamericano de Evaluación de la Calidad de la Educación. Santiago de Chile. (Disponible en www.oei.es).
Program for International Student Assessment. (2003). PISA: Aprender para el mundo del mañana. New York: Autor. (Disponible en www.oecd.org/pisa/39732493.pdf).
Program for International Student Assessment. (2012). PISA: Pisa in focus. New York: Autor. (Disponible en www.oecd.org/pisa/pisainfocus).
Reyes, Y. (2003). Relación entre el rendimiento académico, la ansiedad ante los exámenes, los rasgos de personalidad, el autoconcepto y la asertividad en estudiantes del primer año de psicología de la UNMSM. (Tesis de maestría). UNMSM. Lima.
Rodríguez, R. (2010). Habilidades docentes para la enseñanza de las matemáticas a nivel primaria bajo el enfoque por competencias. Memoria del 3er. Congreso Virtual Internacional de Psicólogos navegantes, vol. 6. 337 - 345.
Tanaka, J. y Huba, G. (1985). A fit index for covariance structure models under arbitrary GLS estimation. British Journal of Mathematical and Statistical Psychology. Recuperado de www. http://onlinelibrary.wiley.com/journal/
The World Bank (1999). Peru education at the crossroads. Challenges and opportunities for the 21st. Century, Report Nº 19066-PE. Washington: The World Bank.
Trends in International Mathematics and Science Study & Progress in International Reading Literacy Study. (2011). TIMSS & PIRLS: International Study Center. Marcos de la evaluación: TIMMS Assessment Frameworks-Peru. Lynch School. Boston. Autor.
Unidad de Medición de la Calidad Educativa. (2011). UMC: Efecto de la escuela en el rendimiento en lógico-matemática en cuarto grado de primaria, 1. Boletín de la Unidad de Medición de la Calidad Educativa (UMC) y el Grupo de Análisis para el Desarrollo (GRADE). Nº 8. Lima: Ministerio de Educación.
Zabala, A. (2003). La práctica educativa. Cómo enseñar. 9ª. Barcelona: Editorial Graó.