Application of the WRF meteorological model for rainfall forecast in the Cuba rainy season, 2014

  • Aldo Moya Álvarez Universidad Continental, Perú
  • José Ortega León Centro Meteorológico de Villa Clara, Cuba
Keywords: Meteorological model, application, verification, rainy season

Abstract

The objective was the application of the WRF meteorological model and verify its rainfall forecast in the Cuba rainy season in 2014, for that two domains were built, one external of 24 x 24 km and one internal of 8 x 8 km resolution. Some of the used parameterization schemes were the ACM2 for boundary layer and the Kain-Fritsch for the convection. Rainfall forecasting was evaluated from 6 to 42 hours. The verification was performed using data from the Meteorological Station Network in Cuba. Two methods were used, one based on the punctual verification for the quantitative forecast, and another known as “partial verification” used for alternative forecast. As results, the WRF model implementation and its verification are achieved, which determined that this model underestimates the rainfall magnitudes, although deviations don’t overcome the 5 mm respect to the real one in the afternoons. From the occurrence viewpoint or not of the “rain” event the model also underestimates, but achieves high detection levels, 81 % for the forecast term 06-12 hours and 73 % for the term 30-36 hours. We conclude that the WRF model slightly underestimates the rainfall magnitude, but achieves high detection levels, which is really useful for making rain forecasts.

References

1. The Weather Research & Forecasting Model [Internet]. Boulder: National Center for Atmospheric Research; [Citado el 15 de mayo de 2015]. Modelo meteorológico WRF [1 pantalla]. Disponible en: http://www.wrf-model.org/index.php

2. Klemp JB. Advances in the WRF model for convection- resolving forecasting, Advances in Geosciences. 2006; 7: 25 - 29.

3. Mitrani I, Alvarez L, Borrajero I. Aplicación optimizada del WRFV3 sobre el territorio cubano mediante el uso de computadora personal, Revista Cubana de Meteorología. 2003; 10 (1): 84 – 94.

4. Turtos L, Capote G, Fonseca Y, Alvarez L, Sanchez M, Bezanilla A, et al. Assessment of the Weather Research and Forecasting model implementation in Cuba addressed to diagnostic air quality modeling. Atmospheric Pollution Research. 2013; 4: 64 – 74.

5. Wisse J, Vila`-Guerau de Arellano J. Analysis of the role of the planetary boundary layer schemes during a severe convective storm, Ann Geophys. 2004; 22: 1861–1874.

6. Mercader J, Codina B, Sairouni A, Cunillera J. Resultados del modelo meteorológico WRF – ARW sobre Cataluña, utilizando diferentes parametrizaciones de la convección y la microfísica de nubes. Ravista Tethys. 2010; 7: 77 - 89.

7. Kuo HL. On formation and intensification of tropical cyclones through latent heat release by cumulus convection». J. Atmos. Sci. 1965; 22: 40-63.

8. Kuo HL. Further studies of the parameterization of the influence of cumulus convection on large-scale flow». J. Atmos. Sci. 1965; 31: 1232-1240.

9. Betts AK, Miller MJ. A new convective adjustement scheme». ECMWF Technical Report. 1984; 43 - 65.

10. Arakawa A, Schubert WH. Interaction of a cumulus cloud ensemble with the large-scale environment», part I. J. Atmos. Sci. 1974; 31: 674 -701.

11. Grell G, Devenyi DA. Generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters. 2002; 29 (14): 38 – 51.

12. Pleim J. Combined Local and Non local Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Journal of Applied Meteorology and Climatology. 2007a; 46 (9), 1383 - 1395.

13. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres. 2008; 113 (13).

14. Mlawer ES, Taubman P, Brown M, Iacono MJ, Clough S. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 1997; 102 (14).

15. Goody RM, Yung YL. Atmospheric Radiation: Theoretical Basis. Oxford University Press. 1995.

16. Lin YL, Farley RD, Orville HD. Bulk parameterization of the snow field in a cloud model, J. Appl. Meteor.1983; 22, 1065–1092.

17. Pan H, Mahrt L. Interaction between soil hydrology and boundary-layer development. Boundary-Layer Meteorology. 1987; 38 (1): 185 - 202.

18. Chen F. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research. D. Atmospheres 1996; 101: 7251 - 7268.

19. Chen F. Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. Journal of Climate. 1997; 10 (6): 1194 – 1215.

20. Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State- NCAR MM 5 Modeling System. II- Preliminary model validation. Monthly Weather Review. 2001a; 129 (4): 587 – 604.

21. Chen F, Dudhia J. 2001b: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review. 2001b; 129 (4): 569 – 585.

22. Gordon WJ, Wixon JA. Shepards methodof “metric interpolation” to bivariate and multivariate interpolation. Mathematics of Computation. 1978; 32 (141): 253 - 264.

23. Ebert EE. Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework, Meteorol Appl. 2008; 15: 51–64.

24. Wilks DS. Statistical Methods in the Atmospheric Sciences: An Introduction, Academic Press. 1995:467 pp.

25. METEO WEB [Internet]. Santa Clara: Servicio Meteorológico de Villa Clara; [Citado el 2 de junio de 2015]. WRF_Precipitaciones Dom.Cuba [1 pantalla]. Disponible en: http://www.cmp.vcl.cu/producto/show/codproducto/000050

26. Dillon ME, Skabar YG, Nicolini M. Desempeño del pronóstico de modelos de alta resolución, en un área limitada: análisis de la estación de verano 2010-2011. 2013; 38 (2).

Published
2015-06-24
How to Cite
Moya Álvarez, A., & Ortega León, J. (2015). Application of the WRF meteorological model for rainfall forecast in the Cuba rainy season, 2014. Apuntes De Ciencia & Sociedad, 5(1). https://doi.org/10.18259/acs.2015021
Section
Artículos de investigación