Determination of aerosol optical depth in the Machu Picchu Peruvian Antarctic Station

  • Julio Ángeles Suazo Universidad Alas Peruanas
Keywords: Aerosol optical depth, Machu Picchu Peruvian Scientific Antarctic Station, solar photometer.

Abstract

Objectives: To determine the aerosol optical depth (AOD) during january 2007 and 2008 and february 2013, at Machu Picchu Peruvian Scientific Antarctic Station (ECAMP). Methods: The research was descriptive and comparative. The main instrument to evaluate AOD was the SP02-L solar photometer for solar direct measurements with 4 sensors centered at the wavelengths of 412, 500, 675 y 862 nm. Only were used records with solar zenith angle lower than 80º and with cloud coverage of zero 30º around the sun. These measurements were compared through the Pearson test with AOD at 550 nm from MODIS (Moderate Resolution Imaging Spectroradiometer) satellites sensors. Results: It was determined a maximum and minimum mean of AOD at 0,1061 and 0,0616 respectively. It was reported a correlation coefficient with the MODIS sensor, in both the Aqua and Terra satellites, being 0,0284 and 0,0059 (p<0,05) respectively. The same correlation was evaluated with the Aerosol Index from OMI (Ozone Monitoring Instrument) sensor resulting a higher correlation, 0,3606 (p<0,05). Comparing the resulting AOD at the ECAMP with other Antarctic stations, it was found similar values around 0,06, especially with the ones close to coastal areas like Neumayer and Aboa. Conclusions: The obtained data at ECAMP during the years 2007, 2008 and 2013 don’t evidence a significant variation regarding to the aerosol optical depth. The high values obtained at ECAMP compared with the Aboa and Neumayer stations can have its explanation in the manual measurements realized in comparison with the automatic ones from other stations.

References

1. Vergaz B. Propiedades ópticas de los aerosoles atmosféricos. Caracterización del área del Golfo de Cádiz, Valladolid. [Tesis Doctoral]: Universidad de Valladolid; 2001.

2. Foster P, Ramaswamy. IPCC, Changes in atmospheric constituents and in radiative forcing. UNIVERSITY PRESS CAMBRIDGE. NEW YORK, USA; 2007.

3. Andreae M. Climatic effects of changing atmospheric aerosol levelsen World Survey of Climatology. Elsevier.1995; 16: 341-392.

4. Raes F, Dingenen R, Vignati E, Wilson J, Putaud J, Sinfeld J, Adams M. Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 2000; 34:4215-4240.

5. WMO. Report of the WMO.WMO aerosol measurement procedure; 2003.

6. Ostro B, Eskeland G, Sánchez J, Feyzioglu T. Air Pollution and Health Effects: A Study of Medical Visits among Children in Santiago, Chile. Environmental Health Perspectives. 1999; 107 (1):69-73.

7. Ostro B, Sánchez J, Aranda C, Eskeland G. Air Pollution and Mortality: Results from a Study of Santiago, Chile. Journal of Exposure Analysis and Environmental Epidemiology. 1996; 6(1): 97-114.

8. Kirchhoff V, Silva A, Costa C, PesLeme N, Pavao H, Zarratti F. UV-B optical thickness observations of the atmosphere. Journal of Geophysical Research. 2001; 106:2963-2973.

9. Tomasi C, Vitale V. Calculation of the relative optical mass functions for air, water vapor, ozone and nitrogen dioxide in the Antarctic and Arctic Atmospheres. 7th Workshop Italian Research on Antarctic Atmosphere, Conference Proceedings. Italian Physical Society, Bologna, Italy. 1997; 62: 22-24.

10. Guía de usuario del fotómetro solar modelo SP02-L de Middleton Imc; 2004.

11. Bodhaine B, Wood N, Dutton E, Slusser J. On rayleigh Optical Depth Calculations. Journal Atmos. and Ocean. 1999; 16:1854-1864.

12. Reagan J, Scott–Fleming I, Herman BR. Recovery of spectral optical, depth and zero – air mass solar spectral irradiance under conditions of temporally varying optical depth proceedings of IGARSS’84 Symposium. Strasbourg. 1984; 215:455-459.

13. Liou K. An introduction to atmospheric radiation. 2da. ed. New York: academic Press; 2007.

14. Michalsky J. Aerosol optical depth valueadded product. Climate Research. 2013; 129: 1-32.

15. Reagan J, Thomason L, Herman B, Palmer J. Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements. Geosci. Remote. 1986; 24: 258-265.

16. Terez E, Terez G. A method to determine atmospheric optical depth using observations of direct solar radiation. J. Geophys. 2003; 108 (D22):1-6.

17. Slusser J, Gibson J, Bigelow D,Kolinski D, Disterhoft P, Lantz K, Baubien A. Langley method of calibrating UV filter radiometers. J. Geophys. 2000; 105(D4): 4841-4849.

18. Wehrli Ch. Calibration of filter radiometers for determination of atmospheric optical depth. Metrologia. 2000; 37 (5): 419-422.

19. Stone R. Monitoring aerosol optical depth at Barrow, Alaska and South Pole; Historical overview, recent results, and future goals. Coop. Res. in Environ. Scien. 2002; 80: 123-144.

20. Castro T, Madronich S, Rivale S, Muhlia A, Mar B. influence of aerosols on photochemical smog in Mexico City. Atmospheric Environment. 2001; 35:1765-1772.

21. Eck T, Holben B, Reid J, O’Neill N, Schafer J, Dubovik O, Simimov A, Yamasoe M y Artaxo P. High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophysical Research Letters. 2003; 30(20): 2035-2044.

22. Dutton E, Reddy P, Ryan S, Tomasi C. Aerosol in polar regions; A historical overview based on optical depth and in situ observations, J. Geophys. Res. 2007; 112: 1-28.

23. Shaw G. Atmospheric turbidity in the Polar Regions. J. Appl. Meteorol. 1982; 21: 1080 – 1088.

24. Ricchiazzi P, Gautier C. The effect of non-Lambertian surface reflectance on aerosol radiative forcing. U.S. Dep. of Energy Daytona Beach. 2005; 14– 18.

25. Mazzola M, Stone R. Evaluation of sun photometer capabilities for retrievals of aerosol optical depth at high latitudes: The POLAR-AOD intercomparison campaigns. Atmos. Environ. 2012; 52:4-17.

Published
2013-07-30
How to Cite
Ángeles Suazo, J. (2013). Determination of aerosol optical depth in the Machu Picchu Peruvian Antarctic Station. Apuntes De Ciencia & Sociedad, 3(1). https://doi.org/10.18259/acs.2013003
Section
Artículos de investigación