Effects of climate anomalies on the snow cover of the Peruvian Central glaciers

  • Jacinto Arroyo Aliaga Universidad Continental
  • Pedro Gurmendi Párraga Universidad Continental
  • Elizabeth Machuca Manrique Universidad Continental
Keywords: Climatic anomalies, deglaciation, glacier

Abstract

The study aims to identify the effects of climate anomalies on the snow cover of the Peruvian Central glaciers. For the development of this research, the Standardized Precipitation Index of climatic anomalies was used for the analysis; the Fast Fourier Transform for climate variability identification; and Landsat satellite images for geoprocessing. The results showed four negative anomalies corresponding to the years 1991 (extremely dry) and 1986, 2005, 2009 (very dry) along with three positive anomalies corresponding to the years 1985, 2010 (extremely rainy), and 1966 (very rainy); that influenced the loss and accumulation of the Huaytapallana glacier snow cover. In the Pariaqaqa glacier, three negative anomalies in 1991 (extremely dry); 1990, 2013 (very dry) were found, and four positive anomalies in 1972, 2010 (extremely rainy); and 1966, 2011 (very rainy); that positively influenced the accumulation of snow cover. As a conclusion, the net loss corresponds to 5 km2 in the Huaytapallana glacier and 7 km2 in the glacier of Pariaqaqa. The snow cover expansion that occurred in both glaciers in the hydrological cycles of 2010, 2011 and 2012 is due to increases of rainfall intensities registered during those years as a result of changes in the atmospheric circulation patterns by the effect of El Niño - Southern Oscillation.

References

1. Viulle M, Burns SJ, Taylor BL, Cruz FW, Bird BW, et al. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim. Past. 2012; 8: 1309-1321.

2. Thompson L, Mosley-thompson E, Davis M, et al. Tropical glacier, records and indictors of climate change, are disappearing globally. Annals of Glaciology. 2011; 52(59): 23-34.

3. Francou B, Ribstein P, Wagnon P, Ramirez E, Pouyaud B. Glaciers of the tropical Andes: indicators of global climate variability. In: Huber U, Bugmann HKM, Reasoner M.A. Global Change and Mountain Regions: An Overview of Current Knowledge, Vol. 23. Dordrecht: Springer; 2005.

4. Bury JT, Mark BG, McKenzie JM, French A, Baraer, et al. Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climate Change. 2011; 105: 179–206.

5. Georges C. 20th-Century Glacier Fluctuations in the Tropical Cordillera Blanca, Perú. Arctic, Antarctic and Alpine Research. 2004; 36 (1): 100–107.

6. Francou B, Vuille M, Wagnon P, Mendoza J, Sicart JE. Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res. 2003; 108(D5): 4154-4162.

7. Kaser G, Georges C. On the mass balance of low latitude glaciers with particular consideration of the Peruvian Cordillera Blanca. Geografiska Annaler. 1999; 81(4); 643–651.

8. Vuille M, Bradley RS, Werner M, Keimig F. 20th century climate change in the tropical Andes: observations and model results. Clim. Chang. 2003; 59(1–2): 75–99.

9. Kaser G, Osmaston H. Tropical Glaciers. Cambridge: Cambridge University Press; 2002.

10. Racoviteanu AE, Manley WF, Arnaud Y, Williams MW. Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Glob. Planet. Chang. 2007; 59(1–4)110–125.

11. Mark BG. Tracing tropical Andean glaciers over space and time: some lessons and transdisciplinary implications. Global and Planetary Change. 2008; 60(1–2): 101–114.

12. Bradley RS, Keimig FT, Diaz HF. Projected temperature changes along the American cordillera and the planned GCOS network. Geophysical Research Letters. 2004; 31(L16210): 1-4.

13. Chevalier P, Pouyand B, Suarez W, Condom T. Climate change threats to environment in the Tropical Andes: glaciers and water resources. Reg. Environ. Chang. 2011; 11(1): 179–187.

14. Sicart JE, Wagnon P, Ribstein P. Atmospheric controls of heat balance of Zongo Glacier (16° S, Bolivia). J. Geophys. Res. 2005; 110(D12106):1-17.

15. Zubieta R, Lagos P. Cambios de la superficie glaciar en la cordillera Huaytapallana: periodo 1976 - 2006. En: Cambio climático en la cuenca del Río Mantaro: Balance de 7 años de estudio. Lima: Instituto Geofísico del Perú; 2010.

16. López–Moreno J, Fontaneda J, Bazo J, Revuelto J, Azorin-Molina C, Valero-Garcés E. et al. Recent glacier retreat and climate trend in Cordillera Huaytapallana, Peru. Global and Planetary Change. 2014; 112: 1-11.

17. Ames A, Francou B. Cordillera Blanca: Glaciares en la Historia. Bull. Inst. fr. études andines.1995, 24(1): 37-64.

18. Fraser B. Melting in the Andes: Goodbay glaciers. Nature. 2012; 491: 180–182.

19. Mark BG, Seltzer GO. Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962–1999): spatial distribution of mass loss and climatic forcing. Quat. Sci. Rev. 2005; 24: 2265–2280.

20. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere. 2013; 7: 81–102.

21. Portocarrero C. Retroceso de glaciares en el Perú: consecuencias sobre los recursos hídricos y los riesgos geodinámicos. Bull. Institut fr. études andines. 1995; 24(3): 697–706.

22. Arroyo J. Tendencias y cambio del clima del valle del Mantaro mediante los análisis de índices de precipitación efectiva y temperatura eficiente. Apunt. cienc. soc. 2011; 1(1), 45–54.

23. Lagos P, Silva Y, Nickl E. El Niño y la precipitación en los Andes del Perú. Bol. Soc. Geol. 2005; 6:7–23.

24. McFadden EM, Ramage J, Rodbell DT. Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. The Cryosphere. 2011; 5: 419-430.

25. ElectroPerú. Boletin Anual de precipitaciones y análisis hidrológico de la Cuenca del Mantaro. Lima; 2013.

26. Nuñez SE, Nuñez LN, Podesta GP, Skansi M. El índice estandarizado de precipitación como herramienta para la caracterización y el monitoreo de la sequía: una prueba de concepto. CONGREMET IX, 9th. Argentina Congress of Meteorology. Buenos Aires: 2005.

27. Espinoza JC, Ronchail J, Guyot J, Junquas C, Vauchel P, Lavado W, et al. Climate variability and extreme drought in the upper Solimões River (Western Amazon Basin): Understanding the exceptional 2010 drougt. Geophisical Research Letters. 2011; 38(13): 1-16.

28. Brecher HH, Thompson LG. Measurement of the retreat of Qori Kalis Glacier in the Tropical Andes of Peru by terrestrial photogrammetry. Photogramm. Eng. Remote Sens. 1993; 59: 1017–1022.

29. Schulz N, Boisier P, Aceituno P. Climate Change Along the Arid Coast of Northern Chile. International Journal of Climatology. 2011; 32(12): 1803-1814.

30. Wilks DS. Statistical Methods in the Atmospheric Sciences. New York: Cornell University; 2006.

Published
2015-06-24
How to Cite
Arroyo Aliaga, J., Gurmendi Párraga, P., & Machuca Manrique, E. (2015). Effects of climate anomalies on the snow cover of the Peruvian Central glaciers. Apuntes De Ciencia & Sociedad, 5(1). https://doi.org/10.18259/acs.2015022
Section
Artículos de investigación